A Fundamental Study of Boundary Layer Diffusion Flames

نویسندگان

  • Ajay Vikram Singh
  • Michael J. Gollner
چکیده

Title of dissertation: A FUNDAMENTAL STUDY OF BOUNDARY LAYER DIFFUSION FLAMES Ajay Vikram Singh, Doctor of Philosophy, 2015 Dissertation directed by: Professor Michael J. Gollner Department of Fire Protection Engineering Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve complex interactions at the interface between gas-phase flames and condensed-phase fuels. This interaction is even more complex as scales increase, because realistic fires occur under fully turbulent conditions which have yet to be fully replicated or understood at the bench scale, where detailed measurements can be conducted. The current research explores the dynamic relationship between combustible condensed fuel surface and gas-phase flames in laminar boundary layers, representing the small scales in which materials are tested (where much of todays theoretical knowledge is also isolated) to realistic large-scale turbulent flames present in almost all unwanted fires, hybrid rocket motors and other similar combustion phenomena. A thorough numerical and experimental investigation of laminar boundary-layer diffusion flames established over the surface of a condensed fuel is presented. By extension of the Reynolds Analogy, it is hypothesized that the non-dimensional temperature gradient at the surface of a condensed fuel is related to the local mass-burning rate through some constant of proportionality. First, this proportionality is tested by using a validated numerical model for a steady flame established over a condensed fuel surface, under free and forced convective conditions. Second, the relationship is tested by conducting experiments in a free and forced convective environment using methanol and ethanol as liquid fuels and PMMA as a solid fuel, where a detailed temperature profile is mapped during steady burning using fine-wire thermocouples mounted to a precision two-axis traverse mechanism. The results from the present study suggests that there is indeed a unique correlation between the mass burning rates of liquid/solid fuels and the temperature gradients at the fuel surface. The correlating factor depends upon the Spalding mass transfer number and gas-phase thermo-physical properties and works in the prediction of both integrated as well as local variations of the mass burning rate as a function of non-dimensional temperature gradient. Convective and radiative heat feedback from the flames were also measured both in the pyrolysis and plume regions by using temperature gradients near the wall. Additional results from precise measurements of the thermal field are also presented. A FUNDAMENTAL STUDY OF BOUNDARY LAYER DIFFUSION FLAMES

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames

Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar bou...

متن کامل

Integral analysis of planar and axisymmetric steady laminar buoyant diffusion flames

Momentum and energy integral analysis of planar and axisymmetric laminar, buoyant diffusion flames is presented with the objective of describing the flame properties and ambient air entrainment. The analysis follows the traditional momentum/energy integral technique utilizing the Howarth–Dorodnitzyn transformation for variable density flows and description of the velocity profiles through the f...

متن کامل

Structure of Laminar Coflow Spray Flames at Different Pressures

Experiments were conducted on laminar spray diffusion flames of ethanol/argon burning in oxygen at pressures of 1 and 3 atm. The flames were physically characterized by measuring droplet velocities and sizes by phase-Doppler anemometry, and gas temperature by thin-filament pyrometry and thermocouples. The flames exhibited a cold core, where little vaporization occurred, surrounded by a primary ...

متن کامل

Simulation of particle diffusion and heat transfer in a two-phase turbulent boundary layer using the Eulerian-Eulerian approach

This work investigates the response of two-dimensional, turbulent boundary layer characteristics over a flat plate to the presence of suspended particulate matter. Both phases are assumed to be interacting continua. That is, the carrier fluid equations are considered to be coupled with the particle-phase equations. A finite-difference technique with non-uniform grid has been employed for the so...

متن کامل

A Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions

The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015